Cargando…

The Mathematics of Elections and Voting

The Mathematics of Elections and Voting  takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wallis, W.D (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-09810-4
003 DE-He213
005 20220116111542.0
007 cr nn 008mamaa
008 141008s2014 sz | s |||| 0|eng d
020 |a 9783319098104  |9 978-3-319-09810-4 
024 7 |a 10.1007/978-3-319-09810-4  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Wallis, W.D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Mathematics of Elections and Voting  |h [electronic resource] /  |c by W.D. Wallis. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 96 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1.Introduction -- 2.Simple Elections I -- 3. Simple Elections II - Condorcet's Method -- 4. Fair Elections; Polls; Amendments -- 5. Arrow's Theorem and the Gibbard-Satterthwaite Theorem -- 6. Complex Elections -- 7. Cardinal Systems -- 8. Weighted Voting. References. 
520 |a The Mathematics of Elections and Voting  takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch of the mathematics behind the various methods used in conducting elections. The reader is lead to a comprehensive picture of the theoretical background of mathematics and elections through an analysis of Condorcet's Principle and Arrow's Theorem of conditions in electoral fairness. Further detailed discussion of various related topics include: methods of manipulating the outcome of an election, amendments, and voting on small committees. In recent years, electoral theory has been introduced into lower-level mathematics courses, as a way to illustrate the role of mathematics in our everyday life.  Few books have studied voting and elections from a more formal mathematical viewpoint.  This text will be useful to those who teach lower level courses or special topics courses and aims to inspire students to understand the more advanced mathematics of the topic. The exercises in this text are ideal for upper undergraduate and early graduate students, as well as those with a keen interest in the mathematics behind voting and elections. . 
650 0 |a Probabilities. 
650 0 |a International economic relations. 
650 0 |a Population-Economic aspects. 
650 0 |a Game theory. 
650 0 |a Political science. 
650 0 |a Mathematical models. 
650 1 4 |a Probability Theory. 
650 2 4 |a International Political Economy'. 
650 2 4 |a Population Economics. 
650 2 4 |a Game Theory. 
650 2 4 |a Political Theory. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319098098 
776 0 8 |i Printed edition:  |z 9783319098111 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-09810-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)