Cargando…

Hydrological Data Driven Modelling A Case Study Approach /

This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Remesan, Renji (Autor), Mathew, Jimson (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Earth Systems Data and Models, 1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-09235-5
003 DE-He213
005 20220120093050.0
007 cr nn 008mamaa
008 141103s2015 sz | s |||| 0|eng d
020 |a 9783319092355  |9 978-3-319-09235-5 
024 7 |a 10.1007/978-3-319-09235-5  |2 doi 
050 4 |a QE1-996.5 
072 7 |a RBG  |2 bicssc 
072 7 |a SCI081000  |2 bisacsh 
072 7 |a RBG  |2 thema 
082 0 4 |a 551  |2 23 
100 1 |a Remesan, Renji.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hydrological Data Driven Modelling  |h [electronic resource] :  |b A Case Study Approach /  |c by Renji Remesan, Jimson Mathew. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 250 p. 172 illus., 59 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Earth Systems Data and Models,  |x 2364-5849 ;  |v 1 
505 0 |a Introduction -- Hydroinformatics and Data based Modelling Issues in Hydrology -- Hydroinformatics and Data based Modelling Issues in Hydrology -- Model Data Selection and Data Pre-processing Approaches -- Machine Learning and Artificial Intelligence Based Approaches -- Data based Solar Radiation Modelling -- Data based Rainfall-Runoff Modelling -- Data based Evapotranspiration Modelling -- Application of Statistical Blockade in Hydrology. 
520 |a This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space. 
650 0 |a Geology. 
650 0 |a Water. 
650 0 |a Hydrology. 
650 0 |a Engineering geology. 
650 1 4 |a Geology. 
650 2 4 |a Water. 
650 2 4 |a Geoengineering. 
700 1 |a Mathew, Jimson.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319092362 
776 0 8 |i Printed edition:  |z 9783319092348 
776 0 8 |i Printed edition:  |z 9783319350288 
830 0 |a Earth Systems Data and Models,  |x 2364-5849 ;  |v 1 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-09235-5  |z Texto Completo 
912 |a ZDB-2-EES 
912 |a ZDB-2-SXEE 
950 |a Earth and Environmental Science (SpringerNature-11646) 
950 |a Earth and Environmental Science (R0) (SpringerNature-43711)