Cargando…

Modeling and Processing for Next-Generation Big-Data Technologies With Applications and Case Studies /

This book covers the latest advances in Big Data technologies and provides the readers with a comprehensive review of the state-of-the-art in Big Data processing, analysis, analytics, and other related topics. It presents new models, algorithms, software solutions and methodologies, covering the ful...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Xhafa, Fatos (Editor ), Barolli, Leonard (Editor ), Barolli, Admir (Editor ), Papajorgji, Petraq (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Modeling and Optimization in Science and Technologies, 4
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-09177-8
003 DE-He213
005 20220120060554.0
007 cr nn 008mamaa
008 141104s2015 sz | s |||| 0|eng d
020 |a 9783319091778  |9 978-3-319-09177-8 
024 7 |a 10.1007/978-3-319-09177-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Modeling and Processing for Next-Generation Big-Data Technologies  |h [electronic resource] :  |b With Applications and Case Studies /  |c edited by Fatos Xhafa, Leonard Barolli, Admir Barolli, Petraq Papajorgji. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 516 p. 219 illus., 52 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modeling and Optimization in Science and Technologies,  |x 2196-7334 ;  |v 4 
505 0 |a Exploring the Hamming distance in distributed infrastructures for similarity search -- Data Modeling for Socially-Based Routing in Opportunistic Networks -- Decision Tree Induction Methods and Their Application to Big Data -- Sensory Data Gathering for Road-Traffic Monitoring: Energy Efficiency, Reliability and Fault-tolerance -- Data aggregation and forwarding route control for efficient data gathering in dense mobile wireless sensor networks -- A socialized system for enabling the extraction of potential values from natural and social sensing -- Leveraging High Performance Computing Infrastructures to Web Data Analytic Applications by means of Message-Passing Interface -- ReHRS: A Hybrid Redundant System for Improving MapReduce Reliability and Availability -- Analysis and Visualization of Large Scale Time Series Network Data -- Parallel Coordinates Version of Time-tunnel (PCTT) and Its Combinatorial Use for Macro to Micro Level Visual Analytics of Multidimensional Data -- Towards a Big Data Analytics Framework for IoT and Smart City Applications -- How the big data is leading the evolution of ICT technologies and processes -- Big Data, Unstructured Data and the Cloud: Perspectives on Internal -- Future Human-Centric Smart Environments -- Automatic Configuration of Mobile Applications using Context-Aware Cloud Based Services -- Socialized system for enabling to extract potential 'values' from natural and social sensing data -- Providing crowd-sourced and real-time media services through a NDN-based platform -- Linked Open Data for Smarter Cities -- Benchmarking Internet of Things Deployment: Frameworks, Best Practices and Experiences. 
520 |a This book covers the latest advances in Big Data technologies and provides the readers with a comprehensive review of the state-of-the-art in Big Data processing, analysis, analytics, and other related topics. It presents new models, algorithms, software solutions and methodologies, covering the full data cycle, from data gathering to their visualization and interaction, and includes a set of case studies and best practices. New research issues, challenges and opportunities shaping the future agenda in the field of Big Data are also identified and presented throughout the book, which is intended for researchers, scholars, advanced students, software developers and practitioners working at the forefront in their field. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Telecommunication. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Communications Engineering, Networks. 
700 1 |a Xhafa, Fatos.  |e editor.  |0 (orcid)0000-0001-6569-5497  |1 https://orcid.org/0000-0001-6569-5497  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Barolli, Leonard.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Barolli, Admir.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Papajorgji, Petraq.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319091785 
776 0 8 |i Printed edition:  |z 9783319091761 
776 0 8 |i Printed edition:  |z 9783319385006 
830 0 |a Modeling and Optimization in Science and Technologies,  |x 2196-7334 ;  |v 4 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-09177-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)