Cargando…

Mathematical Modelling of Chromosome Replication and Replicative Stress

DNA replication is arguably the most crucial process at work in living cells. It is the mechanism by which organisms pass their genetic information from one generation to the next, and life on Earth would be unthinkable without it. Despite the discovery of DNA structure in the 1950s, the mechanism o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karschau, Jens (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-08861-7
003 DE-He213
005 20220115012543.0
007 cr nn 008mamaa
008 140711s2015 sz | s |||| 0|eng d
020 |a 9783319088617  |9 978-3-319-08861-7 
024 7 |a 10.1007/978-3-319-08861-7  |2 doi 
050 4 |a QH505 
072 7 |a PHVN  |2 bicssc 
072 7 |a SCI009000  |2 bisacsh 
072 7 |a PHVN  |2 thema 
082 0 4 |a 571.4  |2 23 
100 1 |a Karschau, Jens.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Modelling of Chromosome Replication and Replicative Stress  |h [electronic resource] /  |c by Jens Karschau. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 76 p. 57 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction -- Optimal Origin Placement for Minimal Replication Time -- Actively Replicating Domains Randomly Associate into Replication Factories -- Summary and Conclusions. 
520 |a DNA replication is arguably the most crucial process at work in living cells. It is the mechanism by which organisms pass their genetic information from one generation to the next, and life on Earth would be unthinkable without it. Despite the discovery of DNA structure in the 1950s, the mechanism of its replication remains rather elusive.   This work makes important contributions to this line of research. In particular, it addresses two key questions in the area of DNA replication: which evolutionary forces drive the positioning of replication origins in the chromosome; and how is the spatial organization of replication factories achieved inside the nucleus of a cell?   A cross-disciplinary approach uniting physics and biology is at the heart of this research. Along with experimental support, statistical physics theory produces optimal origin positions and provides a model for replication fork assembly in yeast. Advances made here can potentially further our understanding of disease mechanisms such as the abnormal replication in cancer. 
650 0 |a Biophysics. 
650 0 |a System theory. 
650 0 |a Biomaterials. 
650 0 |a Nucleic acids. 
650 0 |a Biotechnology. 
650 0 |a Mathematical physics. 
650 1 4 |a Biophysics. 
650 2 4 |a Complex Systems. 
650 2 4 |a Nucleic Acid. 
650 2 4 |a Chemical Bioengineering. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319088624 
776 0 8 |i Printed edition:  |z 9783319088600 
776 0 8 |i Printed edition:  |z 9783319362823 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-08861-7  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)