Cargando…

Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning

Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jean, Frédéric (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-08690-3
003 DE-He213
005 20220117122814.0
007 cr nn 008mamaa
008 140717s2014 sz | s |||| 0|eng d
020 |a 9783319086903  |9 978-3-319-08690-3 
024 7 |a 10.1007/978-3-319-08690-3  |2 doi 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Jean, Frédéric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning  |h [electronic resource] /  |c by Frédéric Jean. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 104 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a 1 Geometry of nonholonomic systems -- 2 First-order theory -- 3 Nonholonomic motion planning -- 4 Appendix A: Composition of flows of vector fields -- 5 Appendix B: The different systems of privileged coordinates. 
520 |a Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Geometry, Differential. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematics. 
650 0 |a Computer science. 
650 1 4 |a Systems Theory, Control . 
650 2 4 |a Differential Geometry. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Mathematics. 
650 2 4 |a Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319086910 
776 0 8 |i Printed edition:  |z 9783319086897 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-08690-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)