Cargando…

Tautological Control Systems

This brief presents a description of a new modelling framework for nonlinear/geometric control theory. The framework is intended to be-and shown to be-feedback-invariant. As such, Tautological Control Systems provides a platform for understanding fundamental structural problems in geometric control...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lewis, Andrew D. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Control, Automation and Robotics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-08638-5
003 DE-He213
005 20220117013049.0
007 cr nn 008mamaa
008 140722s2014 sz | s |||| 0|eng d
020 |a 9783319086385  |9 978-3-319-08638-5 
024 7 |a 10.1007/978-3-319-08638-5  |2 doi 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Lewis, Andrew D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Tautological Control Systems  |h [electronic resource] /  |c by Andrew D. Lewis. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 118 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Control, Automation and Robotics,  |x 2192-6794 
505 0 |a 1 Introduction, motivation, and background -- 2 Topologies for spaces of vector fields -- 3 Time-varying vector fields and control systems -- 4 Presheaves and sheaves of sets of vector fields -- 5 Tautological control systems: Definitions and fundamental properties -- 6 Étalé systems -- 7 Ongoing and future work. 
520 |a This brief presents a description of a new modelling framework for nonlinear/geometric control theory. The framework is intended to be-and shown to be-feedback-invariant. As such, Tautological Control Systems provides a platform for understanding fundamental structural problems in geometric control theory. Part of the novelty of the text stems from the variety of regularity classes, e.g., Lipschitz, finitely differentiable, smooth, real analytic, with which it deals in a comprehensive and unified manner. The treatment of the important real analytic class especially reflects recent work on real analytic topologies by the author. Applied mathematicians interested in nonlinear and geometric control theory will find this brief of interest as a starting point for work in which feedback invariance is important. Graduate students working in control theory may also find Tautological Control Systems to be a stimulating starting point for their research. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Control engineering. 
650 1 4 |a Systems Theory, Control . 
650 2 4 |a Control and Systems Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319086392 
776 0 8 |i Printed edition:  |z 9783319086378 
830 0 |a SpringerBriefs in Control, Automation and Robotics,  |x 2192-6794 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-08638-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)