Cargando…

Algebraic K-theory of Crystallographic Groups The Three-Dimensional Splitting Case /

The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Farley, Daniel Scott (Autor), Ortiz, Ivonne Johanna (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Lecture Notes in Mathematics, 2113
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-08153-3
003 DE-He213
005 20220117035853.0
007 cr nn 008mamaa
008 140827s2014 sz | s |||| 0|eng d
020 |a 9783319081533  |9 978-3-319-08153-3 
024 7 |a 10.1007/978-3-319-08153-3  |2 doi 
050 4 |a QA612.33 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 512.66  |2 23 
100 1 |a Farley, Daniel Scott.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic K-theory of Crystallographic Groups  |h [electronic resource] :  |b The Three-Dimensional Splitting Case /  |c by Daniel Scott Farley, Ivonne Johanna Ortiz. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 148 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2113 
520 |a The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field. 
650 0 |a K-theory. 
650 0 |a Group theory. 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a K-Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Manifolds and Cell Complexes. 
700 1 |a Ortiz, Ivonne Johanna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319081540 
776 0 8 |i Printed edition:  |z 9783319081526 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2113 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-08153-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)