Cargando…

Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems

The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions whi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zaslavski, Alexander J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-08034-5
003 DE-He213
005 20220115215004.0
007 cr nn 008mamaa
008 140820s2014 sz | s |||| 0|eng d
020 |a 9783319080345  |9 978-3-319-08034-5 
024 7 |a 10.1007/978-3-319-08034-5  |2 doi 
050 4 |a QA402.5-402.6 
050 4 |a QA315-316 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
082 0 4 |a 515.64  |2 23 
100 1 |a Zaslavski, Alexander J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems  |h [electronic resource] /  |c by Alexander J. Zaslavski. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 109 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2191-575X 
505 0 |a 1.Introduction -- 2. Optimal control problems with singleton-turnpikes -- 3. Optimal control problems with discounting -- 4. Optimal control problems with nonsingleton-turnpikes -- References. 
520 |a The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals; these results apply to the so-called turnpike property of the optimal control problems. By encompassing the so-called turnpike property the approximate solutions of the problems are determined primarily by the objective function and are fundamentally independent of the choice of interval and endpoint conditions, except in regions close to the endpoints. This book also explores the turnpike phenomenon for two large classes of autonomous optimal control problems. It is illustrated that the turnpike phenomenon is stable for an optimal control problem if the corresponding infinite horizon optimal control problem possesses an asymptotic turnpike property. If an optimal control problem belonging to the first class possesses the turnpike property, then the turnpike is a singleton (unit set). The stability of the turnpike property under small perturbations of an objective function and of a constraint map is established. For the second class of problems where the turnpike phenomenon is not necessarily a singleton the stability of the turnpike property under small perturbations of an objective function is established. Containing solutions of difficult problems in optimal control and presenting new approaches, techniques and methods this book is of interest for mathematicians working in optimal control and the calculus of variations. It also can be useful in preparation courses for graduate students. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319080352 
776 0 8 |i Printed edition:  |z 9783319080338 
830 0 |a SpringerBriefs in Optimization,  |x 2191-575X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-08034-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)