|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-07728-4 |
003 |
DE-He213 |
005 |
20220118101438.0 |
007 |
cr nn 008mamaa |
008 |
140604s2014 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319077284
|9 978-3-319-07728-4
|
024 |
7 |
|
|a 10.1007/978-3-319-07728-4
|2 doi
|
050 |
|
4 |
|a Q295
|
072 |
|
7 |
|a GPFC
|2 bicssc
|
072 |
|
7 |
|a SCI064000
|2 bisacsh
|
072 |
|
7 |
|a GPFC
|2 thema
|
082 |
0 |
4 |
|a 530.1
|2 23
|
100 |
1 |
|
|a Biancalani, Tommaso.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
4 |
|a The Influence of Demographic Stochasticity on Population Dynamics
|h [electronic resource] :
|b A Mathematical Study of Noise-Induced Bistable States and Stochastic Patterns /
|c by Tommaso Biancalani.
|
250 |
|
|
|a 1st ed. 2014.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2014.
|
300 |
|
|
|a XVII, 113 p. 37 illus., 16 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5061
|
505 |
0 |
|
|a Introduction -- Methods -- Noise-Induced Bistability -- Stochastic Waves on Regular Lattices -- Stochastic Waves on Complex Network -- Conclusions.
|
520 |
|
|
|a The dynamics of population systems cannot be understood within the framework of ordinary differential equations, which assume that the number of interacting agents is infinite. With recent advances in ecology, biochemistry and genetics it is becoming increasingly clear that real systems are in fact subject to a great deal of noise. Relevant examples include social insects competing for resources, molecules undergoing chemical reactions in a cell and a pool of genomes subject to evolution. When the population size is small, novel macroscopic phenomena can arise, which can be analyzed using the theory of stochastic processes. This thesis is centered on two unsolved problems in population dynamics: the symmetry breaking observed in foraging populations, and the robustness of spatial patterns. We argue that these problems can be resolved with the help of two novel concepts: noise-induced bistable states and stochastic patterns.
|
650 |
|
0 |
|a System theory.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Biotic communities.
|
650 |
|
0 |
|a Population biology.
|
650 |
|
0 |
|a Biophysics.
|
650 |
1 |
4 |
|a Complex Systems.
|
650 |
2 |
4 |
|a Probability Theory.
|
650 |
2 |
4 |
|a Community and Population Ecology.
|
650 |
2 |
4 |
|a Biophysics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319077291
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319077277
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319384283
|
830 |
|
0 |
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5061
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-07728-4
|z Texto Completo
|
912 |
|
|
|a ZDB-2-PHA
|
912 |
|
|
|a ZDB-2-SXP
|
950 |
|
|
|a Physics and Astronomy (SpringerNature-11651)
|
950 |
|
|
|a Physics and Astronomy (R0) (SpringerNature-43715)
|