Cargando…

The Influence of Demographic Stochasticity on Population Dynamics A Mathematical Study of Noise-Induced Bistable States and Stochastic Patterns /

The dynamics of population systems cannot be understood within the framework of ordinary differential equations, which assume that the number of interacting agents is infinite. With recent advances in ecology, biochemistry and genetics it is becoming increasingly clear that real systems are in fact...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Biancalani, Tommaso (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-07728-4
003 DE-He213
005 20220118101438.0
007 cr nn 008mamaa
008 140604s2014 sz | s |||| 0|eng d
020 |a 9783319077284  |9 978-3-319-07728-4 
024 7 |a 10.1007/978-3-319-07728-4  |2 doi 
050 4 |a Q295 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Biancalani, Tommaso.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Influence of Demographic Stochasticity on Population Dynamics  |h [electronic resource] :  |b A Mathematical Study of Noise-Induced Bistable States and Stochastic Patterns /  |c by Tommaso Biancalani. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 113 p. 37 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction -- Methods -- Noise-Induced Bistability -- Stochastic Waves on Regular Lattices -- Stochastic Waves on Complex Network -- Conclusions. 
520 |a The dynamics of population systems cannot be understood within the framework of ordinary differential equations, which assume that the number of interacting agents is infinite. With recent advances in ecology, biochemistry and genetics it is becoming increasingly clear that real systems are in fact subject to a great deal of noise. Relevant examples include social insects competing for resources, molecules undergoing chemical reactions in a cell and a pool of genomes subject to evolution. When the population size is small, novel macroscopic phenomena can arise, which can be analyzed using the theory of stochastic processes. This thesis is centered on two unsolved problems in population dynamics: the symmetry breaking observed in foraging populations, and the robustness of spatial patterns. We argue that these problems can be resolved with the help of two novel concepts: noise-induced bistable states and stochastic patterns. 
650 0 |a System theory. 
650 0 |a Probabilities. 
650 0 |a Biotic communities. 
650 0 |a Population biology. 
650 0 |a Biophysics. 
650 1 4 |a Complex Systems. 
650 2 4 |a Probability Theory. 
650 2 4 |a Community and Population Ecology. 
650 2 4 |a Biophysics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319077291 
776 0 8 |i Printed edition:  |z 9783319077277 
776 0 8 |i Printed edition:  |z 9783319384283 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-07728-4  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)