Cargando…

Robust Recognition via Information Theoretic Learning

This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: He, Ran (Autor), Hu, Baogang (Autor), Yuan, Xiaotong (Autor), Wang, Liang (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
Descripción Física:XI, 110 p. 29 illus., 25 illus. in color. online resource.
ISBN:9783319074160
ISSN:2191-5776