Cargando…

Multimodal Optimization by Means of Evolutionary Algorithms

This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability fo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Preuss, Mike (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Natural Computing Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-07407-8
003 DE-He213
005 20230719192512.0
007 cr nn 008mamaa
008 151127s2015 sz | s |||| 0|eng d
020 |a 9783319074078  |9 978-3-319-07407-8 
024 7 |a 10.1007/978-3-319-07407-8  |2 doi 
050 4 |a QA76.9.A43 
072 7 |a UMB  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
072 7 |a UMB  |2 thema 
082 0 4 |a 518.1  |2 23 
100 1 |a Preuss, Mike.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Multimodal Optimization by Means of Evolutionary Algorithms  |h [electronic resource] /  |c by Mike Preuss. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 189 p. 42 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 2627-6461 
505 0 |a Introduction: Towards Multimodal Optimization -- Experimentation in Evolutionary Computation -- Groundwork for Niching -- Nearest-Better Clustering -- Niching Methods and Multimodal Optimization Performance -- Nearest-Better Based Niching. 
520 |a This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used. The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis. 
650 0 |a Algorithms. 
650 0 |a Computational intelligence. 
650 0 |a Mathematical optimization. 
650 1 4 |a Algorithms. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319074061 
776 0 8 |i Printed edition:  |z 9783319074085 
776 0 8 |i Printed edition:  |z 9783319791562 
830 0 |a Natural Computing Series,  |x 2627-6461 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-07407-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)