Cargando…

Moving Object Detection Using Background Subtraction

This Springer Brief presents a comprehensive survey of the existing methodologies of background subtraction methods. It presents a framework for quantitative performance evaluation of different approaches and summarizes the public databases available for research purposes. This well-known methodolog...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Shaikh, Soharab Hossain (Autor), Saeed, Khalid (Autor), Chaki, Nabendu (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:This Springer Brief presents a comprehensive survey of the existing methodologies of background subtraction methods. It presents a framework for quantitative performance evaluation of different approaches and summarizes the public databases available for research purposes. This well-known methodology has applications in moving object detection from video captured with a stationery camera, separating foreground and background objects and object classification and recognition. The authors identify common challenges faced by researchers including gradual or sudden illumination change, dynamic backgrounds and shadow and ghost regions. This brief concludes with predictions on the future scope of the methods. Clear and concise, this brief equips readers to determine the most effective background subtraction method for a particular project. It is a useful resource for professionals and researchers working in this field.
Descripción Física:X, 67 p. 32 illus. online resource.
ISBN:9783319073866
ISSN:2191-5776