Cargando…

Differential Characters

Providing a systematic introduction to differential characters as introduced by Cheeger and Simons, this text describes important concepts such as fiber integration, higher dimensional holonomy, transgression, and the product structure in a geometric manner. Differential characters form a model of w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bär, Christian (Autor), Becker, Christian (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Lecture Notes in Mathematics, 2112
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-07034-6
003 DE-He213
005 20220116093541.0
007 cr nn 008mamaa
008 140731s2014 sz | s |||| 0|eng d
020 |a 9783319070346  |9 978-3-319-07034-6 
024 7 |a 10.1007/978-3-319-07034-6  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Bär, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Differential Characters  |h [electronic resource] /  |c by Christian Bär, Christian Becker. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 187 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2112 
505 0 |a Differential Characters and Geometric Chains -- Relative differential Cohomology -- Index. 
520 |a Providing a systematic introduction to differential characters as introduced by Cheeger and Simons, this text describes important concepts such as fiber integration, higher dimensional holonomy, transgression, and the product structure in a geometric manner. Differential characters form a model of what is nowadays called differential cohomology, which is the mathematical structure behind the higher gauge theories in physics.  . 
650 0 |a Geometry, Differential. 
650 0 |a Algebraic topology. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Algebraic Topology. 
700 1 |a Becker, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319070353 
776 0 8 |i Printed edition:  |z 9783319070339 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2112 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-07034-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)