Cargando…

Support Vector Machines and Evolutionary Algorithms for Classification Single or Together? /

When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Stoean, Catalin (Autor), Stoean, Ruxandra (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Intelligent Systems Reference Library, 69
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-06941-8
003 DE-He213
005 20220112232725.0
007 cr nn 008mamaa
008 140515s2014 sz | s |||| 0|eng d
020 |a 9783319069418  |9 978-3-319-06941-8 
024 7 |a 10.1007/978-3-319-06941-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Stoean, Catalin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Support Vector Machines and Evolutionary Algorithms for Classification  |h [electronic resource] :  |b Single or Together? /  |c by Catalin Stoean, Ruxandra Stoean. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 122 p. 31 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 69 
505 0 |a Support Vector Machines -- Evolutionary Algorithms -- Support Vector Machines and Evolutionary Algorithms. 
520 |a When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this 'masked hero' be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Stoean, Ruxandra.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319069425 
776 0 8 |i Printed edition:  |z 9783319069401 
776 0 8 |i Printed edition:  |z 9783319382432 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 69 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-06941-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)