Cargando…

Machine Learning for Adaptive Many-Core Machines - A Practical Approach

The overwhelming data produced everyday and the increasing performance and cost requirements of applications is transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lopes, Noel (Autor), Ribeiro, Bernardete (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Studies in Big Data, 7
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-06938-8
003 DE-He213
005 20220114150710.0
007 cr nn 008mamaa
008 140628s2015 sz | s |||| 0|eng d
020 |a 9783319069388  |9 978-3-319-06938-8 
024 7 |a 10.1007/978-3-319-06938-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Lopes, Noel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Machine Learning for Adaptive Many-Core Machines - A Practical Approach  |h [electronic resource] /  |c by Noel Lopes, Bernardete Ribeiro. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 241 p. 112 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6511 ;  |v 7 
505 0 |a Introduction -- Supervised Learning -- Unsupervised and Semi-supervised Learning -- Large-Scale Machine Learning. 
520 |a The overwhelming data produced everyday and the increasing performance and cost requirements of applications is transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data. This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind. It presents a series of new techniques to enhance, scale and distribute data in a Big Learning framework. It is not intended to be a comprehensive survey of the state of the art of the whole field of machine learning for Big Data. Its purpose is less ambitious and more practical: to explain and illustrate existing and novel GPU-based ML algorithms, not viewed as a universal solution for the Big Data challenges but rather as part of the answer, which may require the use of different strategies coupled together. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Operations research. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Operations Research and Decision Theory. 
700 1 |a Ribeiro, Bernardete.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319069395 
776 0 8 |i Printed edition:  |z 9783319069371 
776 0 8 |i Printed edition:  |z 9783319380964 
830 0 |a Studies in Big Data,  |x 2197-6511 ;  |v 7 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-06938-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)