Cargando…

Astronomy and Big Data A Data Clustering Approach to Identifying Uncertain Galaxy Morphology /

With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing h...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Edwards, Kieran Jay (Autor), Gaber, Mohamed Medhat (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Big Data, 6
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-06599-1
003 DE-He213
005 20220116071555.0
007 cr nn 008mamaa
008 140412s2014 sz | s |||| 0|eng d
020 |a 9783319065991  |9 978-3-319-06599-1 
024 7 |a 10.1007/978-3-319-06599-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Edwards, Kieran Jay.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Astronomy and Big Data  |h [electronic resource] :  |b A Data Clustering Approach to Identifying Uncertain Galaxy Morphology /  |c by Kieran Jay Edwards, Mohamed Medhat Gaber. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 105 p. 54 illus., 24 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6511 ;  |v 6 
505 0 |a Introduction -- Astronomy, Galaxies and Stars: An Overview -- Astronomical Data Mining -- Adopted Data Mining Methods -- Research Methodology -- Development of Data Mining Models -- Experimentation Results -- Conclusion and Future Work. 
520 |a With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as "Uncertain". This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Astronomy-Observations. 
650 0 |a Data mining. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Astronomy, Observations and Techniques. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Gaber, Mohamed Medhat.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319066004 
776 0 8 |i Printed edition:  |z 9783319065984 
776 0 8 |i Printed edition:  |z 9783319383286 
830 0 |a Studies in Big Data,  |x 2197-6511 ;  |v 6 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-06599-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)