Cargando…

Critical Phenomena in Loop Models

When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles. 'Loop models' provide a unifying geometric...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nahum, Adam (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-06407-9
003 DE-He213
005 20220113073234.0
007 cr nn 008mamaa
008 141001s2015 sz | s |||| 0|eng d
020 |a 9783319064079  |9 978-3-319-06407-9 
024 7 |a 10.1007/978-3-319-06407-9  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Nahum, Adam.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Critical Phenomena in Loop Models  |h [electronic resource] /  |c by Adam Nahum. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 141 p. 38 illus., 36 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction -- Completely Packed Loop Models -- Topological Terms, Quantum Magnets and Deconfined Criticality -- The Statistics of Vortex Lines -- Loop Models with Crossings in 2D -- Polymer Collapse -- Outlook -- Appendix A Potts domain walls and CP^{n-1} -- Appendix B Phases for Hedgehogs & Vortices. 
520 |a When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles. 'Loop models' provide a unifying geometric language for problems of this kind. This thesis aims to extend this language in two directions. The first part of the thesis tackles ensembles of loops in three dimensions, and relates them to the statistical properties of line defects in disordered media and to critical phenomena in two-dimensional quantum magnets. The second part concerns two-dimensional loop models that lie outside the standard paradigms: new types of critical point are found, and new results given for the universal properties of polymer collapse transitions in two dimensions. All of these problems are shown to be related to sigma models on complex or real projective space, CP^{n−1} or RP^{n−1} -- in some cases in a 'replica' limit -- and this thesis is also an in-depth investigation of critical behaviour in these field theories. 
650 0 |a Mathematical physics. 
650 0 |a System theory. 
650 0 |a Condensed matter. 
650 1 4 |a Mathematical Methods in Physics. 
650 2 4 |a Complex Systems. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319064086 
776 0 8 |i Printed edition:  |z 9783319064062 
776 0 8 |i Printed edition:  |z 9783319360638 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-06407-9  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)