Cargando…

From Real to Complex Analysis

The purpose of this book is to provide an integrated course in real and complex analysis for those who have already taken a preliminary course in real analysis. It particularly emphasises the interplay between analysis and topology. Beginning with the theory of the Riemann integral (and its improper...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dyer, R. H. (Autor), Edmunds, D. E. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Undergraduate Mathematics Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-06209-9
003 DE-He213
005 20220116155658.0
007 cr nn 008mamaa
008 140514s2014 sz | s |||| 0|eng d
020 |a 9783319062099  |9 978-3-319-06209-9 
024 7 |a 10.1007/978-3-319-06209-9  |2 doi 
050 4 |a QA312-312.5 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
082 0 4 |a 515.42  |2 23 
100 1 |a Dyer, R. H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a From Real to Complex Analysis  |h [electronic resource] /  |c by R. H. Dyer, D. E. Edmunds. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 332 p. 13 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 2197-4144 
505 0 |a The Riemann integral -- Metric spaces -- Complex Analysis -- Sets and functions. 
520 |a The purpose of this book is to provide an integrated course in real and complex analysis for those who have already taken a preliminary course in real analysis. It particularly emphasises the interplay between analysis and topology. Beginning with the theory of the Riemann integral (and its improper extension) on the real line, the fundamentals of metric spaces are then developed, with special attention being paid to connectedness, simple connectedness and various forms of homotopy. The final chapter develops the theory of complex analysis, in which emphasis is placed on the argument, the winding number, and a general (homology) version of Cauchy's theorem which is proved using the approach due to Dixon. Special features are the inclusion of proofs of Montel's theorem, the Riemann mapping theorem and the Jordan curve theorem that arise naturally from the earlier development. Extensive exercises are included in each of the chapters, detailed solutions of the majority of which are given at the end. From Real to Complex Analysis is aimed at senior undergraduates and beginning graduate students in mathematics. It offers a sound grounding in analysis; in particular, it gives a solid base in complex analysis from which progress to more advanced topics may be made. 
650 0 |a Measure theory. 
650 0 |a Functions of real variables. 
650 0 |a Functions of complex variables. 
650 1 4 |a Measure and Integration. 
650 2 4 |a Real Functions. 
650 2 4 |a Functions of a Complex Variable. 
700 1 |a Edmunds, D. E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319062105 
776 0 8 |i Printed edition:  |z 9783319062082 
830 0 |a Springer Undergraduate Mathematics Series,  |x 2197-4144 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-06209-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)