Cargando…

Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects FVCA 7, Berlin, June 2014 /

The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical princip...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Fuhrmann, Jürgen (Editor ), Ohlberger, Mario (Editor ), Rohde, Christian (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Proceedings in Mathematics & Statistics, 77
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-05684-5
003 DE-He213
005 20220114212131.0
007 cr nn 008mamaa
008 140512s2014 sz | s |||| 0|eng d
020 |a 9783319056845  |9 978-3-319-05684-5 
024 7 |a 10.1007/978-3-319-05684-5  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
245 1 0 |a Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects  |h [electronic resource] :  |b FVCA 7, Berlin, June 2014 /  |c edited by Jürgen Fuhrmann, Mario Ohlberger, Christian Rohde. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVIII, 468 p. 87 illus., 40 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1017 ;  |v 77 
505 0 |a Part I Invited contributions. P. Bochev: Compatible Discretizations for Partial Differential Equations -- F. Bouchu: Finite Volume Methods for Shallow Water Equations, Hyperbolic Equations, Magnetohydrodynamics -- C. Chainais-Hillairet: Finite Volume Methods for Drift-Diffusion Equations -- M. Dumbser: High Order One-Step AMR and ALE Methods for Hyperbolic PDE -- P. Helluy: Compressible Multiphase Flows -- K. Mikula: Finite Volumes in Image Processing and Groundwater Flow -- S. Mishra: Finite Volume Methods for Conservation Laws, Uncertainty Quantification -- Part II Theoretical aspects of Finite Volume Methods. 
520 |a The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical physics. 
650 0 |a Computer simulation. 
650 0 |a Differential equations. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Differential Equations. 
700 1 |a Fuhrmann, Jürgen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ohlberger, Mario.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rohde, Christian.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319056852 
776 0 8 |i Printed edition:  |z 9783319056838 
776 0 8 |i Printed edition:  |z 9783319382876 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1017 ;  |v 77 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-05684-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)