Cargando…

Lobachevsky Geometry and Modern Nonlinear Problems

This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyper...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Popov, Andrey (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-05669-2
003 DE-He213
005 20220119151611.0
007 cr nn 008mamaa
008 140806s2014 sz | s |||| 0|eng d
020 |a 9783319056692  |9 978-3-319-05669-2 
024 7 |a 10.1007/978-3-319-05669-2  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Popov, Andrey.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lobachevsky Geometry and Modern Nonlinear Problems  |h [electronic resource] /  |c by Andrey Popov. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a VIII, 310 p. 103 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- 1 Foundations of Lobachevsky geometry: axiomatics, models, images in Euclidean space -- 2 The problem of realizing the Lobachevsky geometry in Euclidean space -- 3 The sine-Gordon equation: its geometry and applications of current interest -- 4 Lobachevsky geometry and nonlinear equations of mathematical physics -- 5 Non-Euclidean phase spaces. Discrete nets on the Lobachevsky plane and numerical integration algorithms for Λ2-equations -- Bibliography -- Index. 
520 |a This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound "geometrical roots" and numerous applications to modern nonlinear problems, it is treated as a universal "object" of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry. 
650 0 |a Algebraic geometry. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Differential Equations. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319056708 
776 0 8 |i Printed edition:  |z 9783319056685 
776 0 8 |i Printed edition:  |z 9783319346229 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-05669-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)