Cargando…

Scalable Pattern Recognition Algorithms Applications in Computational Biology and Bioinformatics /

Recent advances in high-throughput technologies have resulted in a deluge of biological information. Yet the storage, analysis, and interpretation of such multifaceted data require effective and efficient computational tools. This unique text/reference addresses the need for a unified framework desc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Maji, Pradipta (Autor), Paul, Sushmita (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-05630-2
003 DE-He213
005 20220118024639.0
007 cr nn 008mamaa
008 140319s2014 sz | s |||| 0|eng d
020 |a 9783319056302  |9 978-3-319-05630-2 
024 7 |a 10.1007/978-3-319-05630-2  |2 doi 
050 4 |a QH324.2-324.25 
072 7 |a PS  |2 bicssc 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
082 0 4 |a 570.113  |2 23 
100 1 |a Maji, Pradipta.  |e author.  |0 (orcid)0000-0002-8288-8917  |1 https://orcid.org/0000-0002-8288-8917  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Scalable Pattern Recognition Algorithms  |h [electronic resource] :  |b Applications in Computational Biology and Bioinformatics /  |c by Pradipta Maji, Sushmita Paul. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XXII, 304 p. 55 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Pattern Recognition and Bioinformatics -- Part I Classification -- Neural Network Tree for Identification of Splice Junction and Protein Coding Region in DNA -- Design of String Kernel to Predict Protein Functional Sites Using Kernel-Based Classifiers -- Part II Feature Selection -- Rough Sets for Selection of Molecular Descriptors to Predict Biological Activity of Molecules -- f -Information Measures for Selection of Discriminative Genes from Microarray Data -- Identification of Disease Genes Using Gene Expression and Protein-Protein Interaction Data -- Rough Sets for Insilico Identification of Differentially Expressed miRNAs -- Part III Clustering -- Grouping Functionally Similar Genes from Microarray Data Using Rough-Fuzzy Clustering -- Mutual Information Based Supervised Attribute Clustering for Microarray Sample Classification -- Possibilistic Biclustering for Discovering Value-Coherent Overlapping d -Biclusters -- Fuzzy Measures and Weighted Co-Occurrence Matrix for Segmentation of Brain MR Images. 
520 |a Recent advances in high-throughput technologies have resulted in a deluge of biological information. Yet the storage, analysis, and interpretation of such multifaceted data require effective and efficient computational tools. This unique text/reference addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The book reviews both established and cutting-edge research, following a clear structure reflecting the major phases of a pattern recognition system: classification, feature selection, and clustering. The text provides a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics. Topics and features: Reviews the development of scalable pattern recognition algorithms for computational biology and bioinformatics Integrates different soft computing and machine learning methodologies with pattern recognition tasks Discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets Presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images Includes numerous examples and experimental results to support the theoretical concepts described Concludes each chapter with directions for future research and a comprehensive bibliography This important work will be of great use to graduate students and researchers in the fields of computer science, electrical and biomedical engineering. Researchers and practitioners involved in pattern recognition, machine learning, computational biology and bioinformatics, data mining, and soft computing will also find the book invaluable. 
650 0 |a Bioinformatics. 
650 0 |a Pattern recognition systems. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Radiology. 
650 1 4 |a Computational and Systems Biology. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Radiology. 
700 1 |a Paul, Sushmita.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319056319 
776 0 8 |i Printed edition:  |z 9783319056296 
776 0 8 |i Printed edition:  |z 9783319379654 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-05630-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)