Cargando…

Geometrical Multiresolution Adaptive Transforms Theory and Applications /

Modern image processing techniques are based on multiresolution geometrical methods of image representation. These methods are efficient in sparse approximation of digital images. There is a wide family of functions called simply 'X-lets', and these methods can be divided into two groups:...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lisowska, Agnieszka (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Computational Intelligence, 545
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-05011-9
003 DE-He213
005 20220117023556.0
007 cr nn 008mamaa
008 140324s2014 sz | s |||| 0|eng d
020 |a 9783319050119  |9 978-3-319-05011-9 
024 7 |a 10.1007/978-3-319-05011-9  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
100 1 |a Lisowska, Agnieszka.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometrical Multiresolution Adaptive Transforms  |h [electronic resource] :  |b Theory and Applications /  |c by Agnieszka Lisowska. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 107 p. 65 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 545 
505 0 |a Introduction -- Smoothlets -- Multismoothlets -- Moments-Based Multismoothlet Transform -- Image Compression -- Image Denoising -- Edge Detection -- Summary. 
520 |a Modern image processing techniques are based on multiresolution geometrical methods of image representation. These methods are efficient in sparse approximation of digital images. There is a wide family of functions called simply 'X-lets', and these methods can be divided into two groups: the adaptive and the nonadaptive. This book is devoted to the adaptive methods of image approximation, especially to multismoothlets. Besides multismoothlets, several other new ideas are also covered. Current literature considers the black and white images with smooth horizon function as the model for sparse approximation but here, the class of blurred multihorizon is introduced, which is then used in the approximation of images with multiedges. Additionally, the semi-anisotropic model of multiedge representation, the introduction of the shift invariant multismoothlet transform and sliding multismoothlets are also covered. Geometrical Multiresolution Adaptive Transforms should be accessible to both mathematicians and computer scientists. It is suitable as a professional reference for students, researchers and engineers, containing many open problems and will be an excellent starting point for those who are beginning new research in the area or who want to use geometrical multiresolution adaptive methods in image processing, analysis or compression. 
650 0 |a Computer vision. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Computer Vision. 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319050126 
776 0 8 |i Printed edition:  |z 9783319050102 
776 0 8 |i Printed edition:  |z 9783319377148 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 545 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-05011-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)