Cargando…

Statistical Theory and Inference

This text is for  a one semester graduate course in statistical theory and covers minimal and complete sufficient statistics, maximum likelihood estimators, method of moments, bias and mean square error, uniform minimum variance estimators and the Cramer-Rao lower bound, an introduction to large sam...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Olive, David J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-04972-4
003 DE-He213
005 20220116203129.0
007 cr nn 008mamaa
008 140507s2014 sz | s |||| 0|eng d
020 |a 9783319049724  |9 978-3-319-04972-4 
024 7 |a 10.1007/978-3-319-04972-4  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Olive, David J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Theory and Inference  |h [electronic resource] /  |c by David J. Olive. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 434 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Probability and Expectations.- Multivariate Distributions -- Exponential Families.- Sufficient Statistics.- Point Estimation I.-Point Estimation II -- Testing Statistical Hypotheses.- Large Sample Theory.- Confidence Intervals.- Some Useful Distributions -- Bayesian Methods -- Stuff for Students. 
520 |a This text is for  a one semester graduate course in statistical theory and covers minimal and complete sufficient statistics, maximum likelihood estimators, method of moments, bias and mean square error, uniform minimum variance estimators and the Cramer-Rao lower bound, an introduction to large sample theory, likelihood ratio tests and uniformly most powerful  tests and the Neyman Pearson Lemma. A major goal of this text is to make these topics much more accessible to students by using the theory of exponential families. Exponential families, indicator functions and the support of the distribution are used throughout the text to simplify the theory. More than 50 ``brand name" distributions are used to illustrate the theory with many examples of exponential families, maximum likelihood estimators and uniformly minimum variance unbiased estimators. There are many homework problems with over 30 pages of solutions. 
650 0 |a Statistics . 
650 0 |a Probabilities. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability Theory. 
650 2 4 |a Statistics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319049731 
776 0 8 |i Printed edition:  |z 9783319049717 
776 0 8 |i Printed edition:  |z 9783319375892 
776 0 8 |i Printed edition:  |z 9783030396732 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-04972-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)