Cargando…

Human Action Recognition with Depth Cameras

Action recognition is an enabling technology for many real world applications, such as human-computer interaction, surveillance, video retrieval, retirement home monitoring, and robotics. In the past decade, it has attracted a great amount of interest in the research community. Recently, the commodi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Wang, Jiang (Autor), Liu, Zicheng (Autor), Wu, Ying (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-04561-0
003 DE-He213
005 20220119094335.0
007 cr nn 008mamaa
008 140125s2014 sz | s |||| 0|eng d
020 |a 9783319045610  |9 978-3-319-04561-0 
024 7 |a 10.1007/978-3-319-04561-0  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
100 1 |a Wang, Jiang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Human Action Recognition with Depth Cameras  |h [electronic resource] /  |c by Jiang Wang, Zicheng Liu, Ying Wu. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 59 p. 32 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Learning Actionlet Ensemble for 3D Human Action Recognition -- Random Occupancy Patterns -- Conclusion. 
520 |a Action recognition is an enabling technology for many real world applications, such as human-computer interaction, surveillance, video retrieval, retirement home monitoring, and robotics. In the past decade, it has attracted a great amount of interest in the research community. Recently, the commoditization of depth sensors has generated much excitement in action recognition from depth sensors. New depth sensor technology has enabled many applications that were not feasible before. On one hand, action recognition becomes far easier with depth sensors. On the other hand, the drive to recognize more complex actions presents new challenges. One crucial aspect of action recognition is to extract discriminative features. The depth maps have completely different characteristics from the RGB images. Directly applying features designed for RGB images does not work. Complex actions usually involve complicated temporal structures, human-object interactions, and person-person contacts. New machine learning algorithms need to be developed to learn these complex structures. This work enables the reader to quickly familiarize themselves with the latest research in depth-sensor based action recognition, and to gain a deeper understanding of recently developed techniques. It will be of great use for both researchers and practitioners who are interested in human action recognition with depth sensors. The text focuses on feature representation and machine learning algorithms for action recognition from depth sensors. After presenting a comprehensive overview of the state of the art in action recognition from depth data, the authors then provide in-depth descriptions of their recently developed feature representations and machine learning techniques, including lower-level depth and skeleton features, higher-level representations to model the temporal structure and human-object interactions, and feature selection techniques for occlusion handling. 
650 0 |a Computer vision. 
650 0 |a Biometric identification. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Human-computer interaction. 
650 1 4 |a Computer Vision. 
650 2 4 |a Biometrics. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
700 1 |a Liu, Zicheng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wu, Ying.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319045627 
776 0 8 |i Printed edition:  |z 9783319045603 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-04561-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)