|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-04394-4 |
003 |
DE-He213 |
005 |
20220115221246.0 |
007 |
cr nn 008mamaa |
008 |
140207s2014 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319043944
|9 978-3-319-04394-4
|
024 |
7 |
|
|a 10.1007/978-3-319-04394-4
|2 doi
|
050 |
|
4 |
|a QA273.A1-274.9
|
072 |
|
7 |
|a PBT
|2 bicssc
|
072 |
|
7 |
|a PBWL
|2 bicssc
|
072 |
|
7 |
|a MAT029000
|2 bisacsh
|
072 |
|
7 |
|a PBT
|2 thema
|
072 |
|
7 |
|a PBWL
|2 thema
|
082 |
0 |
4 |
|a 519.2
|2 23
|
100 |
1 |
|
|a Burdzy, Krzysztof.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Brownian Motion and its Applications to Mathematical Analysis
|h [electronic resource] :
|b École d'Été de Probabilités de Saint-Flour XLIII - 2013 /
|c by Krzysztof Burdzy.
|
250 |
|
|
|a 1st ed. 2014.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2014.
|
300 |
|
|
|a XII, 137 p. 16 illus., 4 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a École d'Été de Probabilités de Saint-Flour ;
|v 2106
|
505 |
0 |
|
|a 1. Brownian motion -- 2. Probabilistic proofs of classical theorems -- 3. Overview of the "hot spots" problem -- 4. Neumann eigenfunctions and eigenvalues -- 5. Synchronous and mirror couplings -- 6. Parabolic boundary Harnack principle -- 7. Scaling coupling -- 8. Nodal lines -- 9. Neumann heat kernel monotonicity -- 10. Reflected Brownian motion in time dependent domains.
|
520 |
|
|
|a These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
0 |
|a Potential theory (Mathematics).
|
650 |
1 |
4 |
|a Probability Theory.
|
650 |
2 |
4 |
|a Differential Equations.
|
650 |
2 |
4 |
|a Potential Theory.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319043951
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319043937
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319709475
|
830 |
|
0 |
|a École d'Été de Probabilités de Saint-Flour ;
|v 2106
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-04394-4
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|