Cargando…

Brownian Motion and its Applications to Mathematical Analysis École d'Été de Probabilités de Saint-Flour XLIII - 2013 /

These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, su...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Burdzy, Krzysztof (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:École d'Été de Probabilités de Saint-Flour ; 2106
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-04394-4
003 DE-He213
005 20220115221246.0
007 cr nn 008mamaa
008 140207s2014 sz | s |||| 0|eng d
020 |a 9783319043944  |9 978-3-319-04394-4 
024 7 |a 10.1007/978-3-319-04394-4  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Burdzy, Krzysztof.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Brownian Motion and its Applications to Mathematical Analysis  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XLIII - 2013 /  |c by Krzysztof Burdzy. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 137 p. 16 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour ;  |v 2106 
505 0 |a 1. Brownian motion -- 2. Probabilistic proofs of classical theorems -- 3. Overview of the "hot spots" problem -- 4. Neumann eigenfunctions and eigenvalues -- 5. Synchronous and mirror couplings -- 6. Parabolic boundary Harnack principle -- 7. Scaling coupling -- 8. Nodal lines -- 9. Neumann heat kernel monotonicity -- 10. Reflected Brownian motion in time dependent domains. 
520 |a These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains. 
650 0 |a Probabilities. 
650 0 |a Differential equations. 
650 0 |a Potential theory (Mathematics). 
650 1 4 |a Probability Theory. 
650 2 4 |a Differential Equations. 
650 2 4 |a Potential Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319043951 
776 0 8 |i Printed edition:  |z 9783319043937 
776 0 8 |i Printed edition:  |z 9783319709475 
830 0 |a École d'Été de Probabilités de Saint-Flour ;  |v 2106 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-04394-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)