Cargando…

Mathematical and Numerical Methods for Partial Differential Equations Applications for Engineering Sciences /

This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chaskalovic, Joël (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Mathematical Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-03563-5
003 DE-He213
005 20220116224722.0
007 cr nn 008mamaa
008 140516s2014 sz | s |||| 0|eng d
020 |a 9783319035635  |9 978-3-319-03563-5 
024 7 |a 10.1007/978-3-319-03563-5  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Chaskalovic, Joël.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical and Numerical Methods for Partial Differential Equations  |h [electronic resource] :  |b Applications for Engineering Sciences /  |c by Joël Chaskalovic. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 358 p. 38 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Engineering,  |x 2192-4740 
505 0 |a From the Contents: Introduction to functional analytical methods of partial differential equations -- The finite element method -- Variational Formulations of elliptic boundary problems -- Finite Elements and differential Introduction to functional analytical methods of partial differential equations -- The finite element method -- Variational Formulations of elliptic boundary problems. 
520 |a This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic. 
650 0 |a Numerical analysis. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Differential equations. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319035642 
776 0 8 |i Printed edition:  |z 9783319035628 
776 0 8 |i Printed edition:  |z 9783319375564 
776 0 8 |i Printed edition:  |z 9783030301613 
830 0 |a Mathematical Engineering,  |x 2192-4740 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-03563-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)