Cargando…

Learning Motor Skills From Algorithms to Robot Experiments /

This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kober, Jens (Autor), Peters, Jan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Tracts in Advanced Robotics, 97
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-03194-1
003 DE-He213
005 20220117030049.0
007 cr nn 008mamaa
008 131123s2014 sz | s |||| 0|eng d
020 |a 9783319031941  |9 978-3-319-03194-1 
024 7 |a 10.1007/978-3-319-03194-1  |2 doi 
050 4 |a TJ212-225 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Kober, Jens.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Learning Motor Skills  |h [electronic resource] :  |b From Algorithms to Robot Experiments /  |c by Jens Kober, Jan Peters. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 191 p. 56 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Advanced Robotics,  |x 1610-742X ;  |v 97 
505 0 |a Reinforcement Learning in Robotics: A Survey -- Movement Templates for Learning of Hitting and Batting -- Policy Search for Motor Primitives in Robotics -- Reinforcement Learning to Adjust Parameterized Motor Primitives to New Situations -- Learning Prioritized Control of Motor Primitives. 
520 |a This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author's doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Artificial intelligence. 
650 1 4 |a Control, Robotics, Automation. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Peters, Jan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319031958 
776 0 8 |i Printed edition:  |z 9783319031934 
776 0 8 |i Printed edition:  |z 9783319377322 
830 0 |a Springer Tracts in Advanced Robotics,  |x 1610-742X ;  |v 97 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-03194-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)