Cargando…

Random Walks on Disordered Media and their Scaling Limits École d'Été de Probabilités de Saint-Flour XL - 2010 /

In these lecture notes, we will analyze the behavior of random walk on disordered media by means of both probabilistic and analytic methods, and will study the scaling limits. We will focus on the discrete potential theory and how the theory is effectively used in the analysis of disordered media. T...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kumagai, Takashi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:École d'Été de Probabilités de Saint-Flour ; 2101
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-03152-1
003 DE-He213
005 20220114222838.0
007 cr nn 008mamaa
008 140124s2014 sz | s |||| 0|eng d
020 |a 9783319031521  |9 978-3-319-03152-1 
024 7 |a 10.1007/978-3-319-03152-1  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Kumagai, Takashi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Random Walks on Disordered Media and their Scaling Limits  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XL - 2010 /  |c by Takashi Kumagai. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 147 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour ;  |v 2101 
505 0 |a Introduction -- Weighted graphs and the associated Markov chains -- Heat kernel estimates - General theory -- Heat kernel estimates using effective resistance -- Heat kernel estimates for random weighted graphs -- Alexander-Orbach conjecture holds when two-point functions behave nicely -- Further results for random walk on IIC -- Random conductance model. 
520 |a In these lecture notes, we will analyze the behavior of random walk on disordered media by means of both probabilistic and analytic methods, and will study the scaling limits. We will focus on the discrete potential theory and how the theory is effectively used in the analysis of disordered media. The first few chapters of the notes can be used as an introduction to discrete potential theory.   Recently, there has been significant progress on the theory of random walk on disordered media such as fractals and random media. Random walk on a percolation cluster ('the ant in the labyrinth') is one of the typical examples. In 1986, H. Kesten showed the anomalous behavior of a random walk on a percolation cluster at critical probability. Partly motivated by this work, analysis and diffusion processes on fractals have been developed since the late eighties. As a result, various new methods have been produced to estimate heat kernels on disordered media. These developments are summarized in the notes. 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Discrete mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Potential Theory. 
650 2 4 |a Discrete Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319031514 
776 0 8 |i Printed edition:  |z 9783319031538 
830 0 |a École d'Été de Probabilités de Saint-Flour ;  |v 2101 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-03152-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)