Penalty, Shrinkage and Pretest Strategies Variable Selection and Estimation /
The objective of this book is to compare the statistical properties of penalty and non-penalty estimation strategies for some popular models. Specifically, it considers the full model, submodel, penalty, pretest and shrinkage estimation techniques for three regression models before presenting the a...
| Clasificación: | Libro Electrónico |
|---|---|
| Autor principal: | |
| Autor Corporativo: | |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
| Edición: | 1st ed. 2014. |
| Colección: | SpringerBriefs in Statistics,
|
| Temas: | |
| Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Preface
- Estimation Strategies
- Improved Estimation Strategies in Normal and Poisson Models
- Pooling Data: Making Sense or Folly
- Estimation Strategies in Multiple Regression Models
- Estimation Strategies in Partially Linear Models
- Estimation Strategies in Poisson Regression Models.


