Cargando…

Penalty, Shrinkage and Pretest Strategies Variable Selection and Estimation /

The objective of this book is to compare the statistical properties of penalty and non-penalty estimation strategies for some popular models.  Specifically, it considers the full model, submodel, penalty, pretest and shrinkage estimation techniques for three regression models before presenting the a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ahmed, S. Ejaz (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-03149-1
003 DE-He213
005 20220114190707.0
007 cr nn 008mamaa
008 131210s2014 sz | s |||| 0|eng d
020 |a 9783319031491  |9 978-3-319-03149-1 
024 7 |a 10.1007/978-3-319-03149-1  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Ahmed, S. Ejaz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Penalty, Shrinkage and Pretest Strategies  |h [electronic resource] :  |b Variable Selection and Estimation /  |c by S. Ejaz Ahmed. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a IX, 115 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-5458 
505 0 |a Preface -- Estimation Strategies -- Improved Estimation Strategies in Normal and Poisson Models -- Pooling Data: Making Sense or Folly -- Estimation Strategies in Multiple Regression Models -- Estimation Strategies in Partially Linear Models -- Estimation Strategies in Poisson Regression Models. 
520 |a The objective of this book is to compare the statistical properties of penalty and non-penalty estimation strategies for some popular models.  Specifically, it considers the full model, submodel, penalty, pretest and shrinkage estimation techniques for three regression models before presenting the asymptotic properties of the non-penalty estimators and their asymptotic distributional efficiency comparisons.  Further, the risk properties of the non-penalty estimators and penalty estimators are explored through a Monte Carlo simulation study. Showcasing examples based on real datasets, the book will be useful for students and applied researchers in a host of applied fields. The book's level of presentation and style make it accessible to a broad audience. It offers clear, succinct expositions of each estimation strategy.  More importantly, it clearly describes how to use each estimation strategy for the problem at hand.  The book is largely self-contained, as are the individual chapters, so that anyone interested in a particular topic or area of application may read only that specific chapter. The book is specially designed for graduate students who want to understand the foundations and concepts underlying penalty and non-penalty estimation and its applications. It is well-suited as a textbook for senior undergraduate and graduate courses surveying penalty and non-penalty estimation strategies, and can also be used as a reference book for a host of related subjects, including courses on meta-analysis. Professional statisticians will find this book to be a valuable reference work, since nearly all chapters are self-contained. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics-Data processing. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319031507 
776 0 8 |i Printed edition:  |z 9783319031484 
830 0 |a SpringerBriefs in Statistics,  |x 2191-5458 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-03149-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)