Cargando…

Convergence Estimates in Approximation Theory

The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gupta, Vijay (Autor), Agarwal, Ravi P. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-02765-4
003 DE-He213
005 20220115214411.0
007 cr nn 008mamaa
008 140108s2014 sz | s |||| 0|eng d
020 |a 9783319027654  |9 978-3-319-02765-4 
024 7 |a 10.1007/978-3-319-02765-4  |2 doi 
050 4 |a QA221-224 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 511.4  |2 23 
100 1 |a Gupta, Vijay.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Convergence Estimates in Approximation Theory  |h [electronic resource] /  |c by Vijay Gupta, Ravi P. Agarwal. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 361 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Preliminaries -- 2. Approximation by Certain Operators -- 3. Complete Asymptotic Expansion -- 4. Linear and Iterative Combinations -- 5. Better Approximation -- 6. Complex Operators in Compact Disks -- 7. Rate of Convergence for Functions of BV -- 8. Convergence for BV/Bounded Functions on Bezier Variants -- 9. Some More Results on Rate of Convergence -- 10. Rate of Convergence in Simultaneous Approximation -- 11. Future Scope and Open Problems. 
520 |a The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches. 
650 0 |a Approximation theory. 
650 0 |a Operator theory. 
650 0 |a Mathematical analysis. 
650 0 |a Differential equations. 
650 1 4 |a Approximations and Expansions. 
650 2 4 |a Operator Theory. 
650 2 4 |a Analysis. 
650 2 4 |a Differential Equations. 
700 1 |a Agarwal, Ravi P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319027661 
776 0 8 |i Printed edition:  |z 9783319027647 
776 0 8 |i Printed edition:  |z 9783319350134 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-02765-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)