Cargando…

Multiple Wiener-Itô Integrals With Applications to Limit Theorems /

The goal of this Lecture Note is to prove a new type of limit theorems for normalized sums of strongly dependent random variables that play an important role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown tha...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Major, Péter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:2nd ed. 2014.
Colección:Lecture Notes in Mathematics, 849
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-02642-8
003 DE-He213
005 20220118152205.0
007 cr nn 008mamaa
008 131202s2014 sz | s |||| 0|eng d
020 |a 9783319026428  |9 978-3-319-02642-8 
024 7 |a 10.1007/978-3-319-02642-8  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Major, Péter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Multiple Wiener-Itô Integrals  |h [electronic resource] :  |b With Applications to Limit Theorems /  |c by Péter Major. 
250 |a 2nd ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 126 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 849 
520 |a The goal of this Lecture Note is to prove a new type of limit theorems for normalized sums of strongly dependent random variables that play an important role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown that the theory of Wiener-Itô integrals provides a valuable tool in their study. More precisely, a version of these random integrals is introduced that enables us to combine the technique of random integrals and Fourier analysis. The most important results of this theory are presented together with some non-trivial limit theorems proved with their help. This work is a new, revised version of a previous volume written with the goalof giving a better explanation of some of the details and the motivation behind the proofs. It does not contain essentially new results; it was written to give a better insight to the old ones. In particular, a more detailed explanation of generalized fields is included to show that what is at the first sight a rather formal object is actually a useful tool for carrying out heuristic arguments. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319026411 
776 0 8 |i Printed edition:  |z 9783319026435 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 849 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-02642-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)