Cargando…

Sample Efficient Multiagent Learning in the Presence of Markovian Agents

The problem of Multiagent Learning (or MAL) is concerned with the study of how intelligent entities can learn and adapt in the presence of other such entities that are simultaneously adapting. The problem is often studied in the stylized settings provided by repeated matrix games (a.k.a. normal form...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chakraborty, Doran (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Computational Intelligence, 523
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-02606-0
003 DE-He213
005 20220118134936.0
007 cr nn 008mamaa
008 130930s2014 sz | s |||| 0|eng d
020 |a 9783319026060  |9 978-3-319-02606-0 
024 7 |a 10.1007/978-3-319-02606-0  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Chakraborty, Doran.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Sample Efficient Multiagent Learning in the Presence of Markovian Agents  |h [electronic resource] /  |c by Doran Chakraborty. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVIII, 147 p. 31 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 523 
505 0 |a Introduction -- Background -- Learn or Exploit in Adversary Induced Markov Decision Processes -- Convergence, Targeted Optimality and Safety in Multiagent Learning -- Maximizing -- Targeted Modeling of Markovian agents -- Structure Learning in Factored MDPs -- Related Work -- Conclusion and Future Work. 
520 |a The problem of Multiagent Learning (or MAL) is concerned with the study of how intelligent entities can learn and adapt in the presence of other such entities that are simultaneously adapting. The problem is often studied in the stylized settings provided by repeated matrix games (a.k.a. normal form games). The goal of this book is to develop MAL algorithms for such a setting that achieve a new set of objectives which have not been previously achieved. In particular this book deals with learning in the presence of a new class of agent behavior that has not been studied or modeled before in a MAL context: Markovian agent behavior. Several new challenges arise when interacting with this particular class of agents. The book takes a series of steps towards building completely autonomous learning algorithms that maximize utility while interacting with such agents. Each algorithm is meticulously specified with a thorough formal treatment that elucidates its key theoretical properties. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319026077 
776 0 8 |i Printed edition:  |z 9783319026053 
776 0 8 |i Printed edition:  |z 9783319352930 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 523 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-02606-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)