Cargando…

Computational Diffusion MRI and Brain Connectivity MICCAI Workshops, Nagoya, Japan, September 22nd, 2013 /

This volume contains the proceedings from two closely related workshops: Computational Diffusion MRI (CDMRI'13) and Mathematical Methods from Brain Connectivity (MMBC'13), held under the auspices of the 16th International Conference on Medical Image Computing and Computer Assisted Interven...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Schultz, Thomas (Editor ), Nedjati-Gilani, Gemma (Editor ), Venkataraman, Archana (Editor ), O'Donnell, Lauren (Editor ), Panagiotaki, Eleftheria (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Mathematics and Visualization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-02475-2
003 DE-He213
005 20220115035054.0
007 cr nn 008mamaa
008 140113s2014 sz | s |||| 0|eng d
020 |a 9783319024752  |9 978-3-319-02475-2 
024 7 |a 10.1007/978-3-319-02475-2  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 003.3  |2 23 
245 1 0 |a Computational Diffusion MRI and Brain Connectivity  |h [electronic resource] :  |b MICCAI Workshops, Nagoya, Japan, September 22nd, 2013 /  |c edited by Thomas Schultz, Gemma Nedjati-Gilani, Archana Venkataraman, Lauren O'Donnell, Eleftheria Panagiotaki. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 255 p. 78 illus., 67 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics and Visualization,  |x 2197-666X 
505 0 |a Part I Acquisition of Diffusion MRI: Comparing Simultaneous Multi-slice Diffusion Acquisitions by Y.Rathi et al -- Effect of Data Acquisition and Analysis Method on Fiber Orientation Estimation in Diffusion MRI by B.Wilkins et al -- Model-based super-resolution of diffusion MRI by A.Tobisch et al -- A quantitative evaluation of errors induced by reduced field-of-view in diffusion tensor imaging by J.Hering et al -- Part II Diffusion MRI Modeling: The Diffusion Dictionary in the Human Brain is Short: Rotation Invariant Learning of Basis Functions by M.Reisert et al -- Diffusion Propagator Estimation Using Radial Basis Functions by Y.Rathi et al -- A Framework for ODF Inference by using Fiber Tract Adaptive MPG Selection by H.Hontani et al -- Non-Negative Spherical Deconvolution (NNSD) for Fiber Orientation Distribution Function Estimation by J.Cheng et al -- Part III Tractography: A Novel Riemannian Metric for Geodesic Tractography in DTI by A.Fuster et al -- Fiberfox: An extensible system for generating realistic white matter software phantoms by P.F.Neher et al -- Choosing a Tractography Algorithm: On the Effects of Measurement Noise by A.Reichenbach et al -- Uncertainty in Tractography via Tract Confidence Regions by C.J.Brown et al -- Estimating Uncertainty in White Matter Tractography Using Wild Non-Local Bootstrap by P -- T. Yap et al -- Part IV Group Studies and Statistical Analysis: Groupwise Deformable Registration of Fiber Track Sets using Track Orientation Distributions by D. Christiaens et al -- Groupwise registration for correcting subject motion and eddy current distortions in diffusion MRI using a PCA based dissimilarity metric by W. Huizinga et al -- Fiber Based Comparison of Whole Brain Tractographies with Application to Amyotrophic Lateral Sclerosis by G. Zimmerman-Moreno et al -- Statistical Analysis of White Matter Integrity for the Clinical Study of Typical Specific Language Impairment in Children by E.Vallée et al -- Part V Brain Connectivity: Disrupted Brain Connectivity in Alzheimer's Disease: Effects of Network Thresholding: M. Daianu et al -- Rich Club Analysis of Structural Brain Connectivity at 7 Tesla versus 3 Tesla: E. Dennis et al -- Coupled Intrinsic Connectivity: A Principled Method for Exploratory Analysis of Paired Data: D. Scheinost et al -- Power Estimates for Voxel-Based Genetic Association Studies using Diffusion Imaging: N. Jahanshad et al -- Global changes in the connectome in autism spectrum diseases: C. Jonas Goch et al. 
520 |a This volume contains the proceedings from two closely related workshops: Computational Diffusion MRI (CDMRI'13) and Mathematical Methods from Brain Connectivity (MMBC'13), held under the auspices of the 16th International Conference on Medical Image Computing and Computer Assisted Intervention, which took place in Nagoya, Japan, September 2013. Inside, readers will find contributions ranging from mathematical foundations and novel methods for the validation of inferring large-scale connectivity from neuroimaging data to the statistical analysis of the data, accelerated methods for data acquisition, and the most recent developments on mathematical diffusion modeling. This volume offers a valuable starting point for anyone interested in learning computational diffusion MRI and mathematical methods for brain connectivity as well as offers new perspectives and insights on current research challenges for those currently in the field. It will be of interest to researchers and practitioners in computer science, MR physics, and applied mathematics. 
650 0 |a Mathematics-Data processing. 
650 0 |a Computer vision. 
650 0 |a Information visualization. 
650 0 |a Pattern recognition systems. 
650 0 |a Mathematical physics. 
650 0 |a Biometry. 
650 1 4 |a Computational Science and Engineering. 
650 2 4 |a Computer Vision. 
650 2 4 |a Data and Information Visualization. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Biostatistics. 
700 1 |a Schultz, Thomas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Nedjati-Gilani, Gemma.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Venkataraman, Archana.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a O'Donnell, Lauren.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Panagiotaki, Eleftheria.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319024745 
776 0 8 |i Printed edition:  |z 9783319024769 
776 0 8 |i Printed edition:  |z 9783319376844 
830 0 |a Mathematics and Visualization,  |x 2197-666X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-02475-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)