Cargando…

Artificial Organic Networks Artificial Intelligence Based on Carbon Networks /

This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms desig...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ponce-Espinosa, Hiram (Autor), Ponce-Cruz, Pedro (Autor), Molina, Arturo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Computational Intelligence, 521
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-02472-1
003 DE-He213
005 20220116024719.0
007 cr nn 008mamaa
008 131112s2014 sz | s |||| 0|eng d
020 |a 9783319024721  |9 978-3-319-02472-1 
024 7 |a 10.1007/978-3-319-02472-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Ponce-Espinosa, Hiram.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Artificial Organic Networks  |h [electronic resource] :  |b Artificial Intelligence Based on Carbon Networks /  |c by Hiram Ponce-Espinosa, Pedro Ponce-Cruz, Arturo Molina. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 228 p. 192 illus., 56 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 521 
505 0 |a Introduction to Modeling Problems -- Chemical Organic Compounds -- Artificial Organic Networks -- Artificial Hydrocarbon Networks -- Enhancements of Artificial Hydrocarbon Networks -- Notes on Modeling Problems Using Artificial Hydrocarbon Networks -- Applications of Artificial Hydrocarbon Networks.-Appendices. 
520 |a This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        classification; and ·        audio-signal filtering. The text finishes with a consideration of directions in which AHNs  could be implemented and developed in future. A complete LabVIEW™ toolkit, downloadable from the book's page at springer.com enables readers to design and implement organic neural networks of their own. The novel approach to creating networks suitable for machine learning systems demonstrated in Artificial Organic Networks will be of interest to academic researchers and graduate students working in areas associated with computational intelligence, intelligent control, systems approximation and complex networks. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Biotechnology. 
650 0 |a Computer simulation. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Chemical Bioengineering. 
650 2 4 |a Computer Modelling. 
700 1 |a Ponce-Cruz, Pedro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Molina, Arturo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319024738 
776 0 8 |i Printed edition:  |z 9783319024714 
776 0 8 |i Printed edition:  |z 9783319378008 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 521 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-02472-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)