Cargando…

Introduction to Partial Differential Equations

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Olver, Peter J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Undergraduate Texts in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-02099-0
003 DE-He213
005 20220127132410.0
007 cr nn 008mamaa
008 131108s2014 sz | s |||| 0|eng d
020 |a 9783319020990  |9 978-3-319-02099-0 
024 7 |a 10.1007/978-3-319-02099-0  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Olver, Peter J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Partial Differential Equations  |h [electronic resource] /  |c by Peter J. Olver. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XXV, 636 p. 143 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 2197-5604 
505 0 |a What are Partial Differential Equations? -- Linear and Nonlinear Waves -- Fourier Series -- Separation of Variables -- Finite Differences -- Generalized Functions and Green's Functions -- Complex Analysis and Conformal Mapping -- Fourier Transforms -- Linear and Nonlinear Evolution Equations -- A General Framework for Linear Partial Differential Equations -- Finite Elements and Weak Solutions -- Dynamics of Planar Media -- Partial Differential Equations in Space . 
520 |a This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solitons, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements. Peter J. Olver is professor of mathematics at the University of Minnesota. His wide-ranging research interests are centered on the development of symmetry-based methods for differential equations and their manifold applications. He is the author of over 130 papers published in major scientific research journals as well as 4 other books, including the definitive Springer graduate text, Applications of Lie Groups to Differential Equations, and another undergraduate text, Applied Linear Algebra. A Solutions Manual for instrucors is available by clicking on "Selected Solutions Manual" under the Additional Information section on the right-hand side of this page. . 
650 0 |a Differential equations. 
650 0 |a System theory. 
650 0 |a Fourier analysis. 
650 1 4 |a Differential Equations. 
650 2 4 |a Complex Systems. 
650 2 4 |a Fourier Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319021003 
776 0 8 |i Printed edition:  |z 9783319020983 
776 0 8 |i Printed edition:  |z 9783319347448 
830 0 |a Undergraduate Texts in Mathematics,  |x 2197-5604 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-02099-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)