Cargando…

Reduced Order Methods for Modeling and Computational Reduction

This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Quarteroni, Alfio (Editor ), Rozza, Gianluigi (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:MS&A, Modeling, Simulation and Applications, 9
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-02090-7
003 DE-He213
005 20220118232634.0
007 cr nn 008mamaa
008 140605s2014 sz | s |||| 0|eng d
020 |a 9783319020907  |9 978-3-319-02090-7 
024 7 |a 10.1007/978-3-319-02090-7  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
245 1 0 |a Reduced Order Methods for Modeling and Computational Reduction  |h [electronic resource] /  |c edited by Alfio Quarteroni, Gianluigi Rozza. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 334 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a MS&A, Modeling, Simulation and Applications,  |x 2037-5263 ;  |v 9 
505 0 |a 1 W. H. A. Schilders, A. Lutowska: A novel approach to model order reduction for coupled multiphysics problems -- 2 A. C. Ionita, A. C. Antoulas: Case study. Parametrized Reduction using Reduced-Basis and the Loewner Framework -- 3 M. Bebendorf, Y. Maday, B. Stamm: Comparison of some reduced representation approximations -- 4 H. Antil, M. Heinkenschloss, D. C. Sorensen: Application of the Discrete Empirical Interpolation Method to Reduced Order Modeling of Nonlinear and Parametric System -- 5 K. Urban, S. Volkwein, O. Zeeb: Greedy Sampling using Nonlinear Optimization -- 6 P. Benner, L. Feng: A Robust Algorithm for Parametric Model Order Reduction based on Implicit Moment Matching -- 7 F. Chen, J. S. Hesthaven, X. Zhu: On the use of reduced basis methods to accelerate and stabilize the Parareal method -- 8 C. Farhat, D. Amsallem: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin projection: descriptor vs non-descriptor forms -- 9 T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza: Model Order Reduction in Fluid Dynamics: Challenges and Perspectives -- 10 L. Grinberg, M. Deng, A. Yakhot, G. Karniadakis: Window Proper Orthogonal Decomposition. Application to Continuum and Atomistic Data -- 11 M. Bergmann, T. Colin, A. Iollo, D. Lombardi, O. Saut, H. Telib: Reduced order models at work in Aeronautics and Medicine. 
520 |a This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.  Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems. 
650 0 |a Mathematics-Data processing. 
650 0 |a Numerical analysis. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Mathematical models. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Mathematical physics. 
650 1 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Quarteroni, Alfio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rozza, Gianluigi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319020914 
776 0 8 |i Printed edition:  |z 9783319020891 
776 0 8 |i Printed edition:  |z 9783319377353 
830 0 |a MS&A, Modeling, Simulation and Applications,  |x 2037-5263 ;  |v 9 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-02090-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)