Algorithms for Sparsity-Constrained Optimization
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many o...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Bahmani, Sohail (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Edición: | 1st ed. 2014. |
Colección: | Springer Theses, Recognizing Outstanding Ph.D. Research,
261 |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Riemannian Computing in Computer Vision
Publicado: (2016) -
Fractional Processes and Fractional-Order Signal Processing Techniques and Applications /
por: Sheng, Hu, et al.
Publicado: (2012) -
Blind Signal Processing Theory and Practice /
por: Shi, Xizhi
Publicado: (2011) -
Perceptual Image Coding with Discrete Cosine Transform
por: Tan, Ee-Leng, et al.
Publicado: (2015) -
Image Fusion Theories, Techniques and Applications /
por: Mitchell, H.B
Publicado: (2010)