Cargando…

Algorithms for Sparsity-Constrained Optimization

This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bahmani, Sohail (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research, 261
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01881-2
003 DE-He213
005 20220119224340.0
007 cr nn 008mamaa
008 131007s2014 sz | s |||| 0|eng d
020 |a 9783319018812  |9 978-3-319-01881-2 
024 7 |a 10.1007/978-3-319-01881-2  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Bahmani, Sohail.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algorithms for Sparsity-Constrained Optimization  |h [electronic resource] /  |c by Sohail Bahmani. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XXI, 107 p. 13 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 ;  |v 261 
505 0 |a Introduction -- Preliminaries -- Sparsity-Constrained Optimization -- Background -- 1-bit Compressed Sensing -- Estimation Under Model-Based Sparsity -- Projected Gradient Descent for `p-constrained Least Squares -- Conclusion and Future Work. 
520 |a This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models. 
650 0 |a Signal processing. 
650 0 |a Computer science-Mathematics. 
650 0 |a Computer vision. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Computer Vision. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319018829 
776 0 8 |i Printed edition:  |z 9783319018805 
776 0 8 |i Printed edition:  |z 9783319377193 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 ;  |v 261 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01881-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)