Cargando…

An Algebraic Approach to Geometry Geometric Trilogy II /

This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in ge...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Borceux, Francis (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01733-4
003 DE-He213
005 20220117182021.0
007 cr nn 008mamaa
008 131107s2014 sz | s |||| 0|eng d
020 |a 9783319017334  |9 978-3-319-01733-4 
024 7 |a 10.1007/978-3-319-01733-4  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Borceux, Francis.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Algebraic Approach to Geometry  |h [electronic resource] :  |b Geometric Trilogy II /  |c by Francis Borceux. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 430 p. 117 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Preface -- 1.The Birth of Analytic Geometry -- 2.Affine Geometry -- 3.More on Real Affine Spaces -- 4.Euclidean Geometry -- 5.Hermitian Spaces -- 6.Projective Geometry -- 7.Algebraic Curves -- Appendices: A. Polynomials Over a Field -- B. Polynomials in Several Variables -- C. Homogeneous Polynomials -- D. Resultants -- E. Symmetric Polynomials -- F. Complex Numbers -- G. Quadratic Forms -- H. Dual Spaces -- Index -- Bibliography. 
520 |a This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography.    380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes, ...) and second degree (ellipses, hyperboloids, ...) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc.    Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two. 
650 0 |a Geometry. 
650 0 |a Projective geometry. 
650 0 |a Mathematics. 
650 0 |a History. 
650 1 4 |a Geometry. 
650 2 4 |a Projective Geometry. 
650 2 4 |a History of Mathematical Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319017327 
776 0 8 |i Printed edition:  |z 9783319017341 
776 0 8 |i Printed edition:  |z 9783319347523 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01733-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)