Cargando…

Distances and Similarities in Intuitionistic Fuzzy Sets

This book presents the state-of-the-art in theory and practice regarding similarity and distance measures for intuitionistic fuzzy sets. Quantifying similarity and distances is crucial for many applications, e.g. data mining, machine learning, decision making, and control. The work provides readers...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Szmidt, Eulalia (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Fuzziness and Soft Computing, 307
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01640-5
003 DE-He213
005 20220113092656.0
007 cr nn 008mamaa
008 130723s2014 sz | s |||| 0|eng d
020 |a 9783319016405  |9 978-3-319-01640-5 
024 7 |a 10.1007/978-3-319-01640-5  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Szmidt, Eulalia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Distances and Similarities in Intuitionistic Fuzzy Sets  |h [electronic resource] /  |c by Eulalia Szmidt. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 148 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 307 
505 0 |a Intuitionistic Fuzzy Sets as a Generalization of Fuzzy Sets -- Distances -- Similarity Measures between Intuitionistic Fuzzy Sets. 
520 |a This book presents the state-of-the-art in theory and practice regarding similarity and distance measures for intuitionistic fuzzy sets. Quantifying similarity and distances is crucial for many applications, e.g. data mining, machine learning, decision making, and control. The work provides readers with a comprehensive set of theoretical concepts and practical tools for both defining and determining similarity between intuitionistic fuzzy sets. It describes an automatic algorithm for deriving intuitionistic fuzzy sets from data, which can aid in the analysis of information in large databases. The book also discusses other important applications, e.g. the use of similarity measures to evaluate the extent of agreement between experts in the context of decision making. 
650 0 |a Computational intelligence. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319033020 
776 0 8 |i Printed edition:  |z 9783319016412 
776 0 8 |i Printed edition:  |z 9783319016399 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 307 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01640-5  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)