Cargando…

Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis

The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mrugalski, Marcin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Computational Intelligence, 510
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01547-7
003 DE-He213
005 20220119231404.0
007 cr nn 008mamaa
008 130802s2014 sz | s |||| 0|eng d
020 |a 9783319015477  |9 978-3-319-01547-7 
024 7 |a 10.1007/978-3-319-01547-7  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Mrugalski, Marcin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis  |h [electronic resource] /  |c by Marcin Mrugalski. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XXI, 182 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 510 
505 0 |a Introduction -- Designing of dynamic neural networks -- Estimation methods in training of ANNs for robust fault diagnosis -- MLP in robust fault detection of static non-linear systems -- GMDH networks in robust fault detection of dynamic non-linear systems -- State-space GMDH networks for actuator robust FDI. 
520 |a The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications.  . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 0 |a Control engineering. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Applied Dynamical Systems. 
650 2 4 |a Control and Systems Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319032863 
776 0 8 |i Printed edition:  |z 9783319015484 
776 0 8 |i Printed edition:  |z 9783319015460 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 510 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01547-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)