Long-Range Dependence and Sea Level Forecasting
This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-AR...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2013.
|
Edición: | 1st ed. 2013. |
Colección: | SpringerBriefs in Statistics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1. Introduction
- 2. Long-Range Dependence and ARFIMA Models
- 3. Forecasting, Confidence Band Estimation and Updating
- 4.Case Study I: Caspian Sea Level
- 5.Case Study II: Sea Level Change at Peninsular Malaysia and Sabah-Sarawak
- 6. Summary and Conclusions
- 7. References.