Cargando…

Multi-Band Effective Mass Approximations Advanced Mathematical Models and Numerical Techniques /

This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconduct...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Ehrhardt, Matthias (Editor ), Koprucki, Thomas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Lecture Notes in Computational Science and Engineering, 94
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01427-2
003 DE-He213
005 20220113064334.0
007 cr nn 008mamaa
008 140717s2014 sz | s |||| 0|eng d
020 |a 9783319014272  |9 978-3-319-01427-2 
024 7 |a 10.1007/978-3-319-01427-2  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
245 1 0 |a Multi-Band Effective Mass Approximations  |h [electronic resource] :  |b Advanced Mathematical Models and Numerical Techniques /  |c edited by Matthias Ehrhardt, Thomas Koprucki. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 318 p. 83 illus., 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 2197-7100 ;  |v 94 
505 0 |a Introduction -- Part I: Physical Models -- Part II: Numerical Methods -- Part III: Applications -- Part IV: Advanced Mathematical Topics. 
520 |a This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used with upscaling methods to deliver parameters needed in semi-classical models for semiconductor devices, such as quantum well lasers. This book covers in detail all these three aspects using a variety of illustrative examples. Readers will gain detailed insights into the status of the multiband effective mass method for semiconductor nano structures. Both users of the kp method as well as advanced researchers who want to advance the kp method further will find helpful information on how to best work with this method and use it as a tool for characterizing the physical properties of semiconductor nano structures. The book is primarily intended for graduate and Ph.D. students in applied mathematics, mathematical physics and theoretical physics, as well as all those working in quantum mechanical research or the semiconductor / opto-electronic industry who are interested in new mathematical aspects. 
650 0 |a Mathematics-Data processing. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 0 |a Differential equations. 
650 1 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Differential Equations. 
700 1 |a Ehrhardt, Matthias.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Koprucki, Thomas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319014289 
776 0 8 |i Printed edition:  |z 9783319014265 
776 0 8 |i Printed edition:  |z 9783319348827 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 2197-7100 ;  |v 94 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01427-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)