Cargando…

The Mathematics of Coordinated Inference A Study of Generalized Hat Problems /

Two prisoners are told that they will be brought to a room and seated so that each can see the other. Hats will be placed on their heads; each hat is either red or green. The two prisoners must simultaneously submit a guess of their own hat color, and they both go free if at least one of them guesse...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hardin, Christopher S. (Autor), Taylor, Alan D. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Developments in Mathematics, 33
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01333-6
003 DE-He213
005 20220126163156.0
007 cr nn 008mamaa
008 131017s2013 sz | s |||| 0|eng d
020 |a 9783319013336  |9 978-3-319-01333-6 
024 7 |a 10.1007/978-3-319-01333-6  |2 doi 
050 4 |a QA8.9-10.3 
072 7 |a PBCD  |2 bicssc 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBCD  |2 thema 
072 7 |a PBC  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Hardin, Christopher S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Mathematics of Coordinated Inference  |h [electronic resource] :  |b A Study of Generalized Hat Problems /  |c by Christopher S. Hardin, Alan D. Taylor. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 109 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Developments in Mathematics,  |x 2197-795X ;  |v 33 
505 0 |a 1. Introduction -- 2. The Finite Setting -- 3. The Denumerable Setting: Full Visibility -- 4. The Denumerable Setting: One-Way Visibility -- 5. Dual Hat Problems and the Uncountable -- 6. Galvin's Setting: Neutral and Anonymous Predictors -- 7. The Topological Setting -- 8. Universality of the μ-Predictor -- 9. Generalizations and Galois-Tukey Connections -- Bibliography -- Index. 
520 |a Two prisoners are told that they will be brought to a room and seated so that each can see the other. Hats will be placed on their heads; each hat is either red or green. The two prisoners must simultaneously submit a guess of their own hat color, and they both go free if at least one of them guesses correctly. While no communication is allowed once the hats have been placed, they will, however, be allowed to have a strategy session before being brought to the room. Is there a strategy ensuring their release? The answer turns out to be yes, and this is the simplest non-trivial example of a "hat problem." This book deals with the question of how successfully one can predict the value of an arbitrary function at one or more points of its domain based on some knowledge of its values at other points. Topics range from hat problems that are accessible to everyone willing to think hard, to some advanced topics in set theory and infinitary combinatorics. For example, there is a method of predicting the value f(a) of a function f mapping the reals to the reals, based only on knowledge of f's values on the open interval (a - 1, a), and for every such function the prediction is incorrect only on a countable set that is nowhere dense. The monograph progresses from topics requiring fewer prerequisites to those requiring more, with most of the text being accessible to any  graduate student in mathematics. The broad range of readership  includes researchers, postdocs, and graduate students in the fields of  set theory, mathematical logic, and combinatorics, The hope is that this book will bring together mathematicians from different areas to  think about set theory via a very broad array of coordinated inference problems. 
650 0 |a Mathematical logic. 
650 0 |a Topology. 
650 0 |a Game theory. 
650 1 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Topology. 
650 2 4 |a Game Theory. 
700 1 |a Taylor, Alan D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319013343 
776 0 8 |i Printed edition:  |z 9783319013329 
776 0 8 |i Printed edition:  |z 9783319376059 
830 0 |a Developments in Mathematics,  |x 2197-795X ;  |v 33 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01333-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)