Cargando…

Realtime Data Mining Self-Learning Techniques for Recommendation Engines /

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Paprotny, Alexander (Autor), Thess, Michael (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • 1 Brave New Realtime World - Introduction
  • 2 Strange Recommendations? - On The Weaknesses Of Current Recommendation Engines
  • 3 Changing Not Just Analyzing - Control Theory And Reinforcement Learning
  • 4 Recommendations As A Game - Reinforcement Learning For Recommendation Engines
  • 5 How Engines Learn To Generate Recommendations - Adaptive Learning Algorithms
  • 6 Up The Down Staircase - Hierarchical Reinforcement Learning
  • 7 Breaking Dimensions - Adaptive Scoring With Sparse Grids
  • 8 Decomposition In Transition - Adaptive Matrix Factorization
  • 9 Decomposition In Transition Ii - Adaptive Tensor Factorization
  • 10 The Big Picture - Towards A Synthesis Of Rl And Adaptive Tensor Factorization
  • 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests
  • 12 Building A Recommendation Engine - The Xelopes Library
  • 13 Last Words - Conclusion
  • References
  • Summary Of Notation.