Cargando…

Realtime Data Mining Self-Learning Techniques for Recommendation Engines /

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Paprotny, Alexander (Autor), Thess, Michael (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01321-3
003 DE-He213
005 20221122223419.0
007 cr nn 008mamaa
008 131203s2013 sz | s |||| 0|eng d
020 |a 9783319013213  |9 978-3-319-01321-3 
024 7 |a 10.1007/978-3-319-01321-3  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 003.3  |2 23 
100 1 |a Paprotny, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Realtime Data Mining  |h [electronic resource] :  |b Self-Learning Techniques for Recommendation Engines /  |c by Alexander Paprotny, Michael Thess. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XXIII, 313 p. 100 illus., 88 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a 1 Brave New Realtime World - Introduction -- 2 Strange Recommendations? - On The Weaknesses Of Current Recommendation Engines -- 3 Changing Not Just Analyzing - Control Theory And Reinforcement Learning -- 4 Recommendations As A Game - Reinforcement Learning For Recommendation Engines -- 5 How Engines Learn To Generate Recommendations - Adaptive Learning Algorithms -- 6 Up The Down Staircase - Hierarchical Reinforcement Learning -- 7 Breaking Dimensions - Adaptive Scoring With Sparse Grids -- 8 Decomposition In Transition - Adaptive Matrix Factorization -- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization -- 10 The Big Picture - Towards A Synthesis Of Rl And Adaptive Tensor Factorization -- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests -- 12 Building A Recommendation Engine - The Xelopes Library -- 13 Last Words - Conclusion -- References -- Summary Of Notation. 
520 |a Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.  The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.   This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization. 
650 0 |a Mathematics-Data processing. 
650 0 |a Computer science-Mathematics. 
650 0 |a Computer software. 
650 1 4 |a Computational Science and Engineering. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Mathematical Software. 
700 1 |a Thess, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319013206 
776 0 8 |i Printed edition:  |z 9783319013220 
776 0 8 |i Printed edition:  |z 9783319344454 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01321-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)