Cargando…

Structure of Approximate Solutions of Optimal Control Problems

This title examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zaslavski, Alexander J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01240-7
003 DE-He213
005 20220113051339.0
007 cr nn 008mamaa
008 130804s2013 sz | s |||| 0|eng d
020 |a 9783319012407  |9 978-3-319-01240-7 
024 7 |a 10.1007/978-3-319-01240-7  |2 doi 
050 4 |a QA402.5-402.6 
050 4 |a QA315-316 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
082 0 4 |a 515.64  |2 23 
100 1 |a Zaslavski, Alexander J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Structure of Approximate Solutions of Optimal Control Problems  |h [electronic resource] /  |c by Alexander J. Zaslavski. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a VII, 135 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2191-575X 
505 0 |a Preface -- 1.Introduction -- 2.Turnpike Properties of Optimal Control Problems -- 3.Infinite Horizon Problems -- 4.Linear Control Systems -- References.  . 
520 |a This title examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called turnpike property of optimal control problems.  The author generalizes the results of the turnpike property by considering  a class of optimal control problems which is identified with the corresponding complete metric space of objective functions. This establishes the turnpike property for any element in a set that is in a countable intersection which is open everywhere dense sets in the space of integrands; meaning that the turnpike property holds for most optimal control problems. Mathematicians working in optimal control and the calculus of variations and graduate students will find this book  useful and valuable due to its  presentation of solutions to a number of difficult problems in optimal control  and presentation of new approaches, techniques and methods. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Game theory. 
650 1 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Game Theory. 
650 2 4 |a Continuous Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319012391 
776 0 8 |i Printed edition:  |z 9783319012414 
830 0 |a SpringerBriefs in Optimization,  |x 2191-575X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01240-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)