Cargando…

Mathematical Physics A Modern Introduction to Its Foundations /

The goal of this book is to expose the reader to the indispensable role that mathematics---often very abstract---plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hassani, Sadri (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:2nd ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01195-0
003 DE-He213
005 20220114220913.0
007 cr nn 008mamaa
008 130726s2013 sz | s |||| 0|eng d
020 |a 9783319011950  |9 978-3-319-01195-0 
024 7 |a 10.1007/978-3-319-01195-0  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Hassani, Sadri.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Physics  |h [electronic resource] :  |b A Modern Introduction to Its Foundations /  |c by Sadri Hassani. 
250 |a 2nd ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XXXI, 1205 p. 160 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Mathematical Preliminaries -- I Finite-Dimensional Vector Spaces -- 1 Vectors and Linear Maps -- 2 Algebras -- 3 Operator Algebra -- 4 Matrices -- 5 Spectral Decomposition -- II Infinite-Dimensional Vector Spaces -- 6 Hilbert Spaces.- 7 Classical Orthogonal Polynomials -- 8 Fourier Analysis -- III Complex Analysis -- 9 Complex Calculus -- 10 Calculus of Residues -- 11 Advanced Topics -- IV Differential Equations -- 12 Separation of Variables in Spherical Coordinates -- 13 Second-Order Linear Differential Equations -- 14 Complex Analysis of SOLDEs -- 15 Integral Transforms and Differential Equations.- V Operators on Hilbert Spaces -- 16 Introductory Operator Theory -- 17 Integral Equations.- 18 Sturm-Liouville Systems -- VI Green's Functions -- 19 Green's Functions in One Dimension -- 20 Multidimensional Green's Functions: Formalism -- 21 Multidimensional Green's Functions: Applications -- VII Groups and Their Representations -- 22 Group Theory -- 23 Representation of Groups -- 24 Representations of the Symmetric Group -- VIII Tensors and Manifolds -- 25 Tensors -- 26 Clifford Algebras -- 27 Analysis of Tensors -- IX Lie Groups and Their Applications -- 28 Lie Groups and Lie Algebras -- 28.2 An Outline of Lie Algebra Theory.- 29 Representation of Lie Groups and Lie Algebras -- 30 Representation of Clifford Algebras -- 31 Lie Groups and Differential Equations -- 32 Calculus of Variations, Symmetries, and Conservation Laws -- X Fiber Bundles -- 33 Fiber Bundles and Connections -- 34 Gauge Theories -- 35 Differential Geometry -- 36 Riemannian Geometry. 
520 |a The goal of this book is to expose the reader to the indispensable role that mathematics---often very abstract---plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fiber bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision of the first one with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras and spinors, fiber bundles, and gauge theories. The spirit of the first edition, namely the balance between rigor and physical application, has been maintained, as is the abundance of historical notes and worked out examples that demonstrate the "unreasonable effectiveness of mathematics" in modern physics. Einstein has famously said, "The most incomprehensible thing about nature is that it is comprehensible." What he had in mind was reiterated in another one of his famous quotes concerning the question of how " ... mathematics, being after all a product of human thought, is so admirably appropriate to the objects of reality." It is a question that comes to everyone's mind when encountering the highly abstract mathematics required for a deep understanding of modern physics. It is the experience that Eugene Wigner so profoundly described as "the unreasonable effectiveness of mathematics in the natural sciences.". 
650 0 |a Mathematical physics. 
650 0 |a Mathematics. 
650 1 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319011943 
776 0 8 |i Printed edition:  |z 9783319011967 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01195-0  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)