Cargando…

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. O...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hester, Todd (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Studies in Computational Intelligence, 503
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-01168-4
003 DE-He213
005 20220118102408.0
007 cr nn 008mamaa
008 130623s2013 sz | s |||| 0|eng d
020 |a 9783319011684  |9 978-3-319-01168-4 
024 7 |a 10.1007/978-3-319-01168-4  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Hester, Todd.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains  |h [electronic resource] /  |c by Todd Hester. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 165 p. 55 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 503 
505 0 |a Introduction -- Background and Problem Specification -- Real Time Architecture -- The TEXPLORE Algorithm -- Empirical Evaluation -- Further Examination of Exploration -- Related Work -- Discussion and Conclusion -- TEXPLORE Pseudo-Code. 
520 |a This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent's lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples. 
650 0 |a Computational intelligence. 
650 0 |a Computer vision. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Computer Vision. 
650 2 4 |a Control, Robotics, Automation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319011691 
776 0 8 |i Printed edition:  |z 9783319011677 
776 0 8 |i Printed edition:  |z 9783319375106 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 503 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-01168-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)